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This database is a collection of sequence, expression, and PDB fidelity information for E. coli 
strain K12 MG1655 protein domains. 
 
Each entry of the database has two hierarchical levels. The top level is the protein level, denoted 
by ##Unibegin, which marks the beginning of an entry and refers to one entire protein (denoted by 
its Uniprot ID). 
 
The second level is the domain level, denoted by #Dombegin, which marks the beginning of 
information pertinent to a particular domain of the protein. Each protein has one or more domains. 
 
The protein level of the entry contains the following information: 
 
ND:   the number of domains in the protein. 
mRNA:  the mRNA sequence for the corresponding gene, obtained from GenBank. 
TAA:   the translated protein sequence for the mRNA. 
SCL:   the predicted subcellular localization, obtained from PSORTb. 
RPA_M:  the relative protein abundance obtained from the Marcotte dataset. 
RPA_F:  the relative protein abundance obtained from the Frischman dataset. 
RPA_X:  the relative protein abundance obtained from the Xie dataset. 
RNE_C:  the relative mRNA expression obtained from the Church dataset. 
RNE_XM:  the relative mean mRNA expression obtained from the Xie dataset. 
RNE_XL:  the relative lifetime mRNA expression obtained from the Xie dataset. 
SEC:  value can be 'yes' or 'no' obtained from SignalP. If 'yes' then the protein is predicted 

to be secreted via the Sec pathway. 
TAT:  value can be 'yes' or 'no' obtained from TatP (based on D-score). If 'yes' then the 

protein is predicted to be secreted via the Tat pathway. 
BLT_WT:  the relative mRNA expression in wild-type conditions obtained from the Blattner 

dataset. 
BLT-HS:  the relative mRNA expression in the heat shock condition obtained from the 

Blattner dataset. 
 
The domain level of the entry contains the following information on domains within the protein. 
Each domain is labelled Di, where i is the number of the domain in the protein. 
 
Di_PDBC:  PDB ID and chain, listed in the format ID-Chain. 
Di_DB:  database ('SCOP', 'CATH', or ‘DP’) from which the domain information was 

obtained. 
Di_DRC:  codon range for the domain, with position numbering based on the translated 

mRNA sequence. Format is Start/End. 
Di_DRO:  residue range of domain as originally reported in the database (SCOP or CATH) 

from which it was derived. Format is PDB chain ID:Start/End. 
Di_AA:  amino acid sequence of the domain, based on its codon range in the translated 

mRNA sequence. 
Di_NR:  the number of residues comprising the translated domain. 
Di_MR:  the number of missing residues in the PDB domain sequence with respect to the 

translated protein sequence. 
Di_MM:  the number of mismatched residues in the PDB domain sequence when BLASTED 

against the translated protein sequence.  
Di_IR:  the number of inserted residues in the PDB domain sequence with respect to the 

translated protein sequence. 



Di_MC:  value can be 'n' or '*'. If '*', then BLAST search was used to align segment yielded 
multiple alignments, of which the first was used for further analysis. 

Di_NO: the number of residues taking part in ordered structure (ie., residues comprising 
either α-helical or β-strand structures in the PDB domain).   

Di_NA: the number of residues taking part in α-helical structure. 
Di_NB: the number of residues taking part in β-strand structure.  
Di_FA:  the fraction of ordered residues that are taking part in α-helical structure. 
Di_FB:  the fraction of ordered residues that are taking part in β-strand structure. 
Di_CLASS: domain classification that can have values of ‘alpha’, ‘alpha-beta’ or ‘beta.’ 

Domains that have Di_FA values of greater than 0.70 are classified as 
predominately alpha-helical domains (‘alpha’); domains with Di_FB values of 
greater than 0.70 are classified as predominately β-strand domains (‘beta’); 
otherwise, the domains are ‘alpha-beta’. 

Di_KF: the bulk folding rate of the domain when free in solution computed from the De 
Sancho-Munoz model, in units of s-1. 

Di_KU: the bulk unfolding rate of the domain when free in solution computed from the De 
Sancho-Munoz model, in units of s-1. 

Di_DG: the bulk stability of the folded domain relative to the unfolded state at 310 K 
calculated as –RTln[ Di_KF / Di_KU ], in units of kcal/mol. 
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SI Methods
Construction of the Escherichia coli Database. The Escherichia coli
database that was constructed in this study is shown in Dataset S1.
Collecting Escherichia coli K12 MG1655 Protein Data Bank files. All
Protein Data Bank (PDB) files containing proteins from the
Escherichia coli species and whose structures were determined
using solution-state or solid-state NMR or X-ray diffraction, with
a resolution ≤3.0 Å, were downloaded from www.rcsb.org. This
yielded 11,036 PDB chains from 4,352 PDB files. For these
PDBs, we identified their corresponding Uniprot identification
numbers (IDs) when available from the RCSB. If there were
multiple Uniprot IDs associated with a given PDB, we assumed
these were fusion proteins and set them aside to be handled
separately. Only fusion proteins constituted exclusively of E. coli
proteins were considered, and these were divided into different
entries. If the Uniprot ID was not available directly from the
RCSB, we converted other available IDs (PDB, GenBank, or
Norine) to a Uniprot ID. If a PDB mapped to multiple Uniprot
IDs in which only one corresponded to E. coli, we used the
Uniprot ID corresponding to E. coli. If the PDB mapped to
multiple E. coli Uniprot IDs, we determined to which chain each
ID corresponded. For those PDBs for which we were not able to
obtain a Uniprot ID directly or by conversion using the summary
file for the PDB search, we attempted to extract IDs from the
PDB directly by checking the DBREF field in the PDB header.
We restricted this study to the E. coliK12 strain MG1655 (which

corresponds to Uniprot IDs ending in _ECOLI and from the
Uniprot Complete Proteome Set). Our database (Dataset S1) ini-
tially included a mix of K12 MG1655 proteins, non-K12 MG1655
E. coli proteins, and non-E. coli proteins. We deleted non-E. coli
proteins from our database. For non-K12 MG1655 proteins, we
used the BLASTp function of BLAST 2.2.25 (default settings) to
identify homologous K12 MG1655 proteins. We included in our
database (with the K12 MG1655 nomenclature) those non-K12
MG1655 proteins that had ≥98% sequence identity with a pro-
tein in K12 MG1655. If more than one K12 MG1655 protein was
thus identified, we selected the one with the greatest sequence
identity. After these conversions, we had 8,942 PDB chains (cor-
responding to 3,696 PDBs) remaining, representing 1,215 unique
Uniprot IDs.
In constructing our final database of domains (see below), we

determined that 15 Uniprot IDs in our database (CRCA_ECOLI,
GST_ECOLI, GUDH_ECOLI, OXAA_ECOLI, RP5M_ECOLI,
SUFI_ECOLI, TESC_ECOLI, THD1_ECOLI, YBDB_ECOLI,
YEBR_ECOLI, YHIQ_ECOLI, YJGF_ECOLI, YJJX_ECOLI,
FRUR_ECOLI, and MVIM_ECOLI) were deprecated. They
had been replaced in Uniprot by, respectively, PAGP_ECOLI,
GSTA_ECOLI, GUDD_ECOLI, YIDC_ECOLI, HPF_ECOLI,
FTSP_ECOLI, FADM_ECOLI, ILVA_ECOLI, ENTH_ECOLI,
MSRC_ECOLI, RSMJ_ECOLI, RIDA_ECOLI, NCPP_ECOLI,
CRA_ECOLI, and YCEM_ECOLI. The translated mRNA se-
quences in our database corresponded exactly to the sequences for
these updated Uniprot IDs, with the exception of RSMJ_ECOLI,
CRA_ECOLI, and YCEM_ECOLI. In these cases, the protein
sequence listed in Uniprot was identical for the old and updated
IDs, but this sequence differed from the translated mRNA of the
corresponding ID of Blattner and colleagues (1) at the first res-
idue (in all three cases, the first position was listed as methionine
in Uniprot but as valine when the mRNA sequence in the Gen-
Bank was translated in silico). Nevertheless, we replaced all 15
deprecated terms with their updated terms, using the GenBank-
translated sequences for further analysis.

Extracting sequences from PDB files. We replaced modified or non-
standard amino acids with their standard equivalents as available.
Two common modifications are methylated lysine and selenome-
thionine. In addition, we scanned the lines starting with MODRES
in each PDB for information on modified residues. When these
were different from previously encountered modifications, we
added them to our conversion dictionary for use on future PDBs
in our database. We ignored covalent linkers that do not re-
semble amino acids. We discarded chain information for very
short sequences that clearly did not correspond to an E. coli
protein.
Collecting DNA, mRNA, and translated protein information. E. coli cDNA
sequences were downloaded from GenBank. Each cDNA was
associated with a particular ID of Blattner and colleagues (1),
and we included in our set those cDNAs whose Blattner and
colleagues’ ID had a corresponding Uniprot ID. These were
transcribed to their corresponding mRNA sequences, which were
then translated into protein sequences, halting at stop codons. In
some cases, there was a frame problem in which the total length of
the cDNA, as well as its corresponding mRNA, was not divisible
by 3. In the 21 instances in which this occurred the Uniprot se-
quence was used for the translated sequence.
Identifying domains. We used the Structural Classification of Pro-
teins (SCOP) version 1.75 (2) and CATH version 2.0 (3) data-
bases to identify domains within our proteins of interest. Because
of the potential for double-counting domains if we combined the
two databases, we assembled an integrated list of domains using
a hierarchical approach. For each PDB file in our set, we first
identified the SCOP and CATH domains associated with it.
Within each PDB, if a given chain had associated domains in
CATH, we included these in the database. If it did not, we
checked whether that chain had domains in the SCOP database.
If so, we included these. For the 2,549 PDB chains for which
there were not SCOP or CATH entries, we used pDomains to
identify domains using the Domain Parser (DP) software. Be-
cause pDomains contain only a subset of PDBs, we were able to
identify domains for 1,195 of these PDB chains.
In some cases, DP domains did not map well onto the num-

berings in the PDB files themselves. We conducted a series of
transformations to correct for this. If the first residue in the DP
domain had a lower numbering than the first numbered residue in
the PDB chain, we shifted all the residues in the domain, such that
the first residue in the DP domain and the PDB chain matched.
We performed a similar calculation for the last residue of the
PDB domain. First, we considered single domain proteins. We
determined whether any segment of a given domain in DP had a
starting residue with a lower numerical position than the starting
residue in the PDB chain or an ending residue with a higher
numerical position than the ending residue in the PDB chain. We
adjusted the domain positions to account for the difference be-
tween the first domain position and the first chain position and
between the last domain position and the last chain position. For
multiple domain proteins, we conducted a similar procedure, but
one that shifted all domains on the basis of those that lay outside
the range of the PDB chain itself.
SCOP and CATH define domains based on evolutionary and

homology relationships. Therefore, the domains they define will
not always represent the autonomous folding units that are the
relevant definition of a domain in this study. For example, 90% of
the domains in our proteins of interest are composed of one
contiguous segment along the primary structure; 10% consist of
two or more segments that are noncontiguous along the primary
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structure. The segments in the latter domains are separated by
126 residues on average (Fig. S1). This large separation means
that it is reasonable to treat these two segments as autonomous
folding units on the ribosome because they will have the op-
portunity to fold sequentially on the ribosome without influence
from the other segment. Therefore, for the 10% of domains that
consisted of multiple segments, we treated each segment as a
separate domain in our database. Naturally occurring protein
segments of less than 50 residues in length rarely are capable of
folding autonomously (i.e., in isolation). Therefore, we removed
from our database any domain that was less than 50 residues in
length. This procedure resulted in the 1,236 cytosolic domains in
our database.
Assigning domain residue and codon numbering. To analyze cotrans-
lational folding, we needed to be able to compare codons on the
mRNA with residues in the protein sequences. However, PDB
sequences often include only fragments of the original protein or
leave off beginning and ending residues. Therefore, we aligned
codon and residue numbering using BLAST (4).
We used BLAST to analyze each segment of each domain in

our database in comparison to the full-length translated sequence
(as derived from the cDNA sequence). This enabled us to adjust
the codon number on the basis of missing, mismatched, and
inserted residues in the PDB sequence.
When a residue was missing from the PDB sequence of the

domain, we added one to the residue number of the downstream
residues (to reflect the offset). When a residue was inserted in
the PDB sequence that did not exist in the original sequence, we
skipped over numbering it and continued with numbering at the
first noninserted residue. Mismatched residues were numbered
normally.
In some cases, the BLAST analysis returned multiple alignments

of a segment against the full-length sequence. In these cases, we
only considered the first (highest bit score) alignment. In all cases,
BLAST yielded an alignment.
Quantifying the structural fidelity and uniqueness of a domain. As a
measure of the fidelity of the PDBs used in our analysis, we kept
track of the number of missing, inserted, andmismatched residues
for each domain. In the RCSB, multiple PDBs often refer to the
same protein. Therefore, there is a great potential for duplicate
domains in the final database. We sought to guard against this by
using the following method to identify duplicate domains.
For the set of domains corresponding to a given Uniprot ID, we

assumed domains were different if they possessed a different
number of segments. For those domains with the same number of
segments, we used the following test.
Consider two domains of protein A, denoted Am and An. Am

and An each have i segments. Let x be an arbitrary tolerance
threshold. Am,i is the ith segment of domain m of protein A. If
Am,i and An,i started more than x residues apart for one or more
values of i, we considered the two domains to be different. Al-
ternatively, if Am,i and An,i ended more than x residues apart for
one or more values of i, we considered the two domains to be
different.
Otherwise, we considered the domains to be the same, and we

used the following procedure to select the most accurate domain
structure to include in our database. First, if one of the domains
was derived from DP and the other was derived from SCOP or
CATH, we deleted the DP domain. If this did not delete one of
the domains, we compared the total number of missing residues.
If the total numbers of missing residues in the two domains were
different, we selected the domain with the fewest missing resi-
dues. If these values were the same, we compared the total number
of inserted residues. If the total numbers of inserted residues in
the two domains were different, we selected the domain with the
fewest inserted residues. If these values were the same, we
compared the total number of mismatched residues. If the total
numbers of mismatched residues in the two domains were dif-

ferent, we selected the domain with the fewest mismatched res-
idues. If these values were the same, we compared the total length
of the domains. If the total lengths of the domains were different,
we selected the domain with the greatest length. If these were the
same, we compared the type of experiment from which the PDB
data were obtained. If these were different, we selected the
domain obtained by X-ray diffraction. If these were the same, we
compared the resolution of the two structures. If these were
different, we selected the domain with the highest resolution. If
these were the same, we compared the deposition date of the
structures. If these were different, we selected the domain of the
structure most recently deposited. If these values were the same,
we arbitrarily selected the first domain in our list.
For sets of domains considered to be the same that included

more than two entries, we iterated this process, comparing pairs
of domains in order of their listing, selecting one of each pair as
we proceeded. We ended the procedure when only one domain
remained.
We tried a variety of tolerance values, using x= 30 for the final

database. Another possibility that we considered was that domains
overlapped with each other. In cases in which this occurred, we
used only domains from a single PDB chain, selecting this chain
using the criteria listed above.
Determination of subcellular localization using PSORTb.We used PSORTb
version 3.0 (5) with default settings for Gram-negative bacteria to
predict subcellular localizations for each protein in our database.
Determination of proteins in the Sec and Tat pathways using SignalP and
TatP. We used SignalP version 4.0 (6) with default settings for
Gram-negative bacteria to identify proteins predicted to be se-
creted via the Sec pathway. We used TatP version 1.0 (7) with
default settings to identify proteins predicted to be secreted via
the Tat pathway. There are several scores produced by TatP, but
the D-score is used by TatP for differentiation of secretory vs.
nonsecretory proteins. We used this score for our classification.
Appending mRNA and protein abundance data. We include in our
database literature data on mRNA expression and protein abun-
dance from a variety of sources, as described below. In all cases,
identifiers for data were first converted to Uniprot IDs. Further
analysis was restricted to those data for which there was an
unambiguous Uniprot ID (cases in which a single ID pointed to
multiple Uniprot IDs were eliminated). Each restricted dataset
was normalized by dividing its data points by the sum of the
values in the set.

Marcotte dataset.For the dataset of Marcotte and colleagues (8),
protein abundance data were reported using absolute protein
expression methodology, which provides an estimate of protein
abundance in molecules per cell. The original labels were IDs of
Blattner and colleagues (1).

Frishman dataset. For the dataset of Frishman et al. (9), protein
abundance data were reported as an estimate of the copy num-
ber per cell based on the emPAI score. The original labels were
Uniprot IDs.

Church dataset. For the dataset of Church and colleagues (10),
mRNA expression data were reported as an estimate of copy
number per cell based on microarray experiments. The original
labels were IDs of Blattner and colleagues (1).

Xie dataset.We include three entries from the dataset of Xie and
colleagues (11): mean RNA expression, lifetime RNA expression,
and protein abundance. RNA data were reported from RNA
sequencing, whereas protein data were based on fluorescence
measurements of fluorescently tagged proteins. The original la-
bels were IDs of Blattner and colleagues (1).

Blattner dataset. For the dataset of Blattner and colleagues (1),
mRNA expression data were reported for WT and heat shock
conditions as an estimate of copy number per cell based on
microarray experiments. The original labels were IDs of Blattner
and colleagues (1).
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Calculation of Codon Translation Times at Different E. coli Growth
Rates. We use the method of Viljoen and colleagues (12) to cal-
culate the mean time it takes to add an amino acid to the
growing nascent chain at nascent chain length i, τA,i , at 37 °C. In
this approach τA,i = 9.06 + 1.45[10.48C(i) + 0.5R(i)] in milli-
seconds, where 9.06 is the time it takes for the chemical step of
peptide bond formation and translocation of the A-site tRNA to
the P-site and the term in brackets accounts for the time it takes
for a cognate tRNA to bind to codon i [10.48C(i)] and the delay
due to kinetic competition of noncognate tRNA binding [0.5R
(i)]. Full details of this model can be found in the study by
Viljoen and colleagues (12). Briefly, the parameters C(i) and R
(i) are a function of the codon identity, the density of cognate
and noncognate tRNA molecules in the cell, the diffusion con-
stants of tRNA, and the solution temperature. The cognate and
noncognate tRNA identities were taken from table 1 in ref. 12.
The number of tRNA and release factor (RF) molecules in E.
coli were calculated using the cellular concentrations reported in
Table 5 of Ref. 13 multiplied by E. coli’s volume, V (Table S2)
(13). tRNA molecules are typically fully charged in E. coli cells
under nonstarvation conditions (14). Therefore, we assumed the
numbers in Table S2 correspond to the number of charged
tRNA molecules. The volume of E. coli in units of cubic mi-
crometers was calculated from the empirical relationship V =
0.4·2dph10−18, where dph is the number of E. coli doublings per
hour. The diffusion constants of the different tRNA molecules
were taken from table 1 in ref. 12; however, for RF1 and RF2,
we used a diffusion coefficient of 0.257·10−11 m2/s because we
believe this is more realistic than the value of 0.3947·10−11 m2/s
originally used. This is based on the fact that RF1 and RF2 are of
a similar size, shape, and mass as the tRNA molecules. This

change leads to the differences between the calculated τA,i values
in Table S1 and table 5 in ref. 12.

Calculation of Domain Folding and Unfolding Kinetics in Bulk Solution.
We used the de Sancho–Muñoz (DM) model (15) to estimate
τF,bulk and τU,bulk at 310 K. The DM model uses experimentally
informed enthalpy (table 3 in ref. 15), entropy (equations 1 and 2
in ref. 15), and heat capacity (equation 6 in ref. 15) per residue
estimates to predict the transition state barrier height on folding
and unfolding, denoted, respectively, as ΔU→F and ΔU→F. These
barrier values are then inserted into transition state theory to pre-
dict τF,bulk as being equal to k−10 eΔU→F=RT and τU,bulk as being equal
to k−10 eΔF→U=RT , where R is the universal gas constant and T is the
solution temperature. In our analysis, we used the eight pa-
rameter values as originally reported for the DM model. However,
we used a solution temperature of 310 K as opposed to the orig-
inal value of 298 K. Given that the DM model uses temper-
ature-dependent thermodynamic equations for the enthalpy,
entropy, and heat capacity, we believe this is a reasonable ap-
proximation.

Structural Classification of Domains. The DM model uses the
structural classification of a domain in its parameter selection.
Domains were classified in Dataset S1 based on their secondary
structural content using the program Stride (16). Stride’s algo-
rithm uses backbone dihedral angles as well as hydrogen bonding
patterns to identify helical and β-strand structures. A domain was
classified as either mostly α-helical or mostly β-strand if more
than 70% of the residues comprising the ordered secondary
structure were either α-helical or β-strand. A domain was con-
sidered mixed α/β if both the α-helical and β-strand content was
greater than 30% of the ordered structure.
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Fig. S1. Probability density function (PDF) distribution of the number of residues separating segments of the primary structure that comprises a single domain
according to SCOP and CATH. This distribution was calculated from only those SCOP and CATH domains that contained more than one segment in our dataset
of proteins of interest.

Fig. S2. Probability density function (PDF) of protein lengths of the cytoplasmic proteome in E. coli (brown) and the cytosolic proteins in our database (blue).

Fig. S3. Fraction of the cytosolic proteome that exhibits cotranslational folding as a function of E. coli’s growth rate at 37 °C. The line is to guide the eye and is
not based on any model.
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Fig. S4. Cotranslational folding curves of domain 2 from protein 6PDG at an infinitely slow translation (blue) and the finite translation rates in E. coli at 37 °C
and a doubling time of 150 min (red). Note that this domain exhibits cotranslational folding at extremely slow translation rates but not at the translation rates in
E. coli.

Fig. S5. Average ΔLm value as a function of gene expression level as reported in the BLT_WT field in Dataset S1. The average ΔLm value, and its standard error,
were calculated from the set of cotranslational folding proteins that fell within a given quintile of expression level.
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Fig. S6. Results using a different scaling relationship for τF,i (Eq. 3) that reproduces the trends observed in the laser optical tweezers (LOT) experiments of
Kaiser et al. (1). (A) Behavior of τF,i for protein G using Eq. 3 with parameter values for a, b, and c of 402.371, 5.21917 × 1022, and 10.4368, respectively. Note
that we use the experimentally determined τU,bulk here (2). (B) Cumulative distribution function of ΔLm using the original parameters (red) and the parameters
(blue) of Kaiser et al. (1). (C) Structural characterization of domains that fold cotranslationally with ΔLm = 0 and those that fold with ΔLm values greater than 41
residues in E. coli cells that are dividing every 150 min at 37 °C. (Upper) Probability density function (PDF) vs. domain length. (Lower) Probability of different
domain classifications in terms of mostly α (α), mostly β (β), or mixed α/β secondary structure.

1. Kaiser CM, Goldman DH, Chodera JD, Tinoco I, Jr., Bustamante C (2011) The ribosome modulates nascent protein folding. Science 334(6063):1723–1727.
2. De Sancho D, Doshi U, Muñoz V (2009) Protein folding rates and stability: How much is there beyond size? J Am Chem Soc 131(6):2074–2075.
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Fig. S7. Probability density distribution of the average translation rate of codons after the C terminus of a cotranslationally folding domain that is pre-
dominantly α-helical (black), β-strand (blue), or mixed α/β (red). The Mann–Whitney U test, corrected for multiple hypotheses using the Holm–Bonferroni
method, indicates the median translation rates of these distributions are the same within statistical error.
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Table S1. τA per codon (milliseconds) at different E. coli growth
rates at 37 °C

E. coli doubling time, min

Codon Label 150 86 60 37.5 24

UUU 1 100.7 96.8 89.5 100.9 99.0
UUC 2 161.7 152.0 138.5 164.2 156.4
UUG 3 36.3 37.3 36.9 37.6 42.1
UUA 4 111.0 127.3 117.4 163.1 168.0
UCU 5 35.8 31.9 33.0 32.9 34.3
UCC 6 194.7 194.7 187.6 191.2 184.5
UCG 7 88.4 70.5 77.6 79.1 81.5
UCA 8 75.5 60.8 66.7 63.1 65.8
UGU 9 51.4 55.3 56.3 53.4 59.5
UGC 10 86.2 92.2 93.8 90.6 97.0
UGG 11 125.3 140.2 126.5 133.2 117.3
UGA 12 28.2 25.2 28.9 38.4 39.9
UAU 13 33.8 36.6 37.6 33.0 38.1
UAC 14 57.9 62.1 65.4 55.6 63.4
UAG 15 114.6 98.2 106.7 143.7 184.9
UAA 16 24.9 22.7 25.3 33.5 35.0
CUU 17 214.7 192.1 179.7 207.1 178.5
CUC 18 162.7 151.2 141.7 157.0 136.1
CUG 19 27.8 28.1 27.4 26.9 28.9
CUA 20 232.5 212.6 227.2 227.8 254.5
CCU 21 110.9 104.2 111.8 103.5 116.3
CCC 22 58.4 59.0 61.1 53.3 61.9
CCG 23 108.7 126.2 101.5 142.8 156.0
CCA 24 173.4 179.6 171.5 177.4 194.2
CGU 25 21.1 23.1 21.8 19.9 20.4
CGC 26 28.1 31.2 30.1 27.2 28.3
CGG 27 339.2 269.5 529.6 453.3 483.5
CGA 28 27.2 30.1 29.7 25.3 26.1
CAU 29 233.2 223.3 204.2 218.4 190.3
CAC 30 163.5 166.9 153.6 153.7 138.0
CAG 31 188.5 182.3 179.1 149.5 134.8
CAA 32 128.2 124.6 103.9 149.2 125.0
GUU 33 18.5 19.1 20.1 17.9 18.3
GUC 34 177.3 172.0 156.8 170.3 175.2
GUG 35 30.5 32.5 37.0 30.0 30.8
GUA 36 60.4 65.2 77.1 61.6 66.4
GCU 37 27.0 26.0 24.1 24.8 23.9
GCC 38 355.3 360.4 363.3 336.0 362.3
GCG 39 31.7 30.4 28.1 29.3 27.7
GCA 40 69.7 64.4 56.6 64.7 61.9
GGU 41 27.2 26.8 26.3 28.5 25.7
GGC 42 41.4 40.6 39.8 44.1 40.9
GGG 43 61.9 63.5 63.9 56.5 65.6
GGA 44 289.0 291.3 289.7 278.7 321.1
GAU 45 58.3 57.7 59.4 57.3 53.5
GAC 46 95.9 96.3 100.7 92.5 86.8
GAG 47 29.9 30.6 30.3 28.8 28.0
GAA 48 51.6 52.6 52.0 50.7 48.4
AUU 49 74.4 76.2 75.8 69.4 66.4
AUC 50 105.9 106.4 104.7 95.2 88.8
AUG 51 210.9 202.2 198.9 186.2 213.8
AUA 52 105.2 106.2 104.6 95.3 90.7
ACU 53 36.5 36.5 37.0 35.3 32.7
ACC 54 121.4 118.5 119.4 129.2 134.6
ACG 55 102.7 102.1 107.9 98.6 92.2
ACA 56 136.2 133.7 139.7 114.8 96.9
AGU 57 57.9 61.5 63.5 68.4 71.3
AGC 58 100.2 107.2 112.5 124.4 137.0
AGG 59 407.9 345.1 369.4 309.7 416.0
AGA 60 145.1 181.6 171.4 178.2 189.7
AAU 61 74.8 79.6 76.1 68.6 66.6
AAC 62 127.2 133.6 127.7 116.6 114.6
AAG 63 83.8 83.3 85.0 93.1 94.7
AAA 64 57.5 54.3 54.1 59.8 59.1
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Table S2. Number of molecules per cell at different E. coli growth
rates at 37 °C

E. coli doubling time, min

tRNA Label 150 86 60 37.5 24

Ala1 1 3,257 4,590 7,110 12,793 28,574
Ala2 2 619 829 1,178 2,329 4,864
Arg2 3 4,767 5,689 7,858 17,357 34,843
Arg3 4 638 1,021 733 1,650 3,134
Arg4 5 870 919 1,335 2,380 4,796
Arg5 6 390 614 814 1,796 2,997
Asn 7 1,198 1,510 2,199 4,454 9,933
Asp1 8 2,402 3,181 4,258 8,791 21,066
Cys 9 1,592 1,909 2,644 5,140 9,633
Gln1 10 766 1,064 1,835 2,314 5,968
Gln2 11 883 1,205 1,754 3,702 8,543
Glu2 12 4,729 6,096 8,450 17,613 39,993
Gly1 13 1,072 1,404 1,957 3,998 7,549
Gly2 14 1,072 1,404 1,957 3,998 7,549
Gly3 15 4,373 5,951 8,470 14,487 34,011
His 16 642 856 1,330 2,446 5,968
Ile1 17 1,741 2,318 3,352 6,907 16,856
Ile2 18 1,741 2,318 3,352 6,907 16,856
Leu1 19 4,484 5,834 8,475 15,568 30,250
Leu2 20 944 1,357 2,043 3,446 8,080
Leu3 21 667 974 1,324 2,329 4,319
Leu4 22 1,919 2,477 3,524 7,054 12,672
Leu5 23 1,134 1,357 2,058 2,665 5,150
Lys 24 1,932 2,660 3,717 6,374 14,212
Metf1 25 1,214 1,886 3,039 4,622 13,926
Metf2 26 718 892 1,193 2,468 5,137
Metm 27 708 1,013 1,471 2,993 6,036
Phe 28 1,039 1,408 2,169 3,424 6,963
Pro1 29 902 954 1,775 2,008 3,638
Pro2 30 721 982 1,142 2,928 5,109
Pro3 31 581 739 1,122 1,862 3,488
Sec 32 219 336 485 766 1,417
Ser1 33 1,300 2,175 2,766 5,096 10,029
Ser2 34 346 406 591 1,000 1,975
Ser3 35 1,411 1,717 2,290 3,943 7,726
Ser5 36 766 1,017 1,451 2,687 5,491
Thr1 37 101 160 273 408 912
Thr2 38 543 782 1,067 1,949 4,251
Thr3 39 1,099 1,459 1,957 3,548 7,549
Thr4 40 918 1,240 1,643 3,643 9,388
Trp 41 947 1,087 1,694 3,030 6,840
Tyr1 42 772 943 1,365 3,366 5,709
Tyr2 43 1,265 1,510 1,896 3,811 6,867
Val1 44 3,852 4,723 5,598 13,867 27,784
Val2A 45 632 782 1,203 1,971 3,801
Val2B 46 635 935 1,335 2,636 6,022
RF1 47 1,200 1,800 2,300 3,250 4,900
RF2 48 6,000 9,345 10,590 12,760 24,900
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